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Abstract

The essential work of fracture technique although straightforward, is time and material
demanding. A non-linear logarithmic function was proposed for the simulation of the
force-elongation behaviour of the deeply double edge-notched specimens used in the
experimental procedure for the essential work of fracture technique. A variety of blends
of polyolefin based matrices with different rubber types, and also kaolin particles were
used to validate the proposed function. The empirical function used for the simulation
gave satisfactory results over a range of crack sizes.

Introduction

Before presenting the main part of this work, which is the attempt to simulate the load-
displacement response of the deeply double edge-notched (DDEN-T) specimens it would
be useful to give here a brief introduction into the essential work of fracture theory.

Essential Work of Fracture Theory

According to the EWF theory (1-3), a distinction is being made between a process zone or
process plane where the actual crack runs, and a plastic zone, which surrounds the process
zone. Consequently, the total work required to fracture a pre-cracked specimen can also
be divided in two parts associated with each of the two zones mentioned above. It can be
written therefore:

Wf = We + Wp [1]

where Wf is the total fracture work, We the work spent for the crack advance in the
process plane (generation of new surfaces) and Wp the energy consumed in the plastic
zone. Thus, We is related to a 2-D plane and is therefore a function of area (lt), whereas
Wp is dissipated in a 3-D plastic zone and can be thus considered a function of volume
(l2t), where: t=specimen thickness, l=ligament. Equation 1 can be also expressed by the
specific terms:

wf = we + ßwpl [2]
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where: wf =Wf/lt, wp,=Wp/l
2t, and ß is a geometry factor associated with the shape of the

plastic zone.
According to Equation 2, the work of fracture is a linear function of the ligament size. we

can be determined from the interception of the linear regression line, fitted to the wf vs l
graphs, with the y-axis. It should be mentioned here that Wf can be determined by
calculating the integral of force over displacement from the tensile tests performed on
deeply double edge notched tensile (DDEN-T, cf. Figure 1) specimens of various
ligament sizes. An important prerequisite of the plane stress EWF approach is that the
crack propagates only after the ligament has been fully yielded.

Simulation necessity

Up to this point, and according to the ESIS testing protocols (4), at least 20 specimens are
needed to obtain valid EWF data results. In combination with the fact that DDEN-T
specimens can be quite large, it is easy to conclude that the EWF testing method is very
material demanding. Moreover, in most cases the crosshead speed during tests is slower
than 5mm/min, which implies a long testing period for all specimens. An alternative way
is needed to validate and/or obtain EWF results without undertaking the whole arduous
experimental procedure used up to now.

As stated in previous communications (5-8), one of the most important EWF method
prerequisites is the self-similarity of the force-elongation (F-X) plots obtained during
fracture of the DDEN-T specimens. It has been observed that the EWF method works
perfectly when these curves have similar shape characteristics. On the contrary, plots
without similarities lead to large experimental scatter as seen in previous work (9-10).

Self-similarity means that the F-X plots for a material depend on the actual ligament
length. As we can see in Figure 2 for the example of a rubber toughened polypropylene,
the plots are similar to each other and almost analogue to ligament size. So the quantity:

which represents the work of fracture or total energy required to tear a specimen apart,
should also be a linear function of ligament size.

The latter conclusion implies that a function describing the F-X or F(x) plots is enough to
obtain the work of fracture of a DDEN-T specimen for any ligament size, within the EWF
requirement for plain stress fracture: l>3t. It is therefore of paramount siginificance to
undertake effort on simulation. This would allow us to obtain valid specific essential
work of fracture data within short times and by using a minimum number of specimens.

Materials and specimen preparation

A variety of materials were used for the experimental procedures. Blends of two different
kinds of thermoplastic elastomers with metallocene catalyzed isotactic polypropylene (m-
iPP) were chosen for the experimental study/empirical simulation. The elastomers were
ethylene-co-butylene copolymers of a varying 1-butylene content (EBR). Type EBR-90
had an almost 90wt% in 1-butylene in comparison to the EBR-48 type which contained
only 48wt%. Blend composition is as follows: m-iPP/EBR90; 85/15 wt% and m-
iPP/EBR-48; 85/15 wt% also. Both blends were available in compression molded disk-
shaped plates of 130 mm diameter and 1 mm thickness (11).
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Injection molded plaques of a poly(butylene terephthalate) (PBT) blend with a
functionalized ethylene-acrylate elastomer (EAF) were provided by BASF AG
(Ludwigshafen, Germany) in form of injection molded square plates of 180*180*4 mm3.
Blend weight ratio was set at 80/20% in PBT/EAF particles respectively. A blend of high
density polyethylene (HDPE) with kaolin (Al2O3·SiO2·2H2O) particles at a mixture ratio
of 70/30 wt%, respectively, was also included in this study. This material was available in
the form of injection molded plaques of 3 mm thickness.

DDEN-T specimens (dimensions: 40 mm x 80 mm, cf. Figure 1) for the EWF tests were
cut from all above mentioned blend plaques by a rotating disk table-saw. All specimens
were precracked using a band saw and a fine notch was introduced afterwards by tapping
with a fresh razor blade. All tests were performed at a crosshead speed of 1 mm./min. The
primary EWF data are available from previous works (11-12) where the toughness
response of the blends tested was discussed in detail.

Results and discussion

Simulation process

Figure 2 displays the force-displacement response of a series of DDEN-T specimens of
m-iPP/15wt% EBR48. There are some interesting observations which can be made on this
diagram. As we can see, the deformation of the specimen corresponding to the load
maximum appears to be a constant value, except for large ligaments. In other words, the
deformation at yield point, Xy, changed at a very small scale for many of the specimens
used. Xy was experimentally determined by using 3-5 DDEN-T specimens.
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It is well known from Hill's plasticity theory (13), that the net section stress (�n) at the
load maximum (yield point) for DDEN-T specimens should be: �n�1.15�y (4,13). Taking
into account that for each specimen the net section (notched section, A) is a known
quantity, it can be easily concluded that the maximum load, Fmax, for each specimen can
also be predicted exactly and will be: Fmax= �nA [5], where A is the ligament cross-
section (A=lt). The empirical function proposed for the simulation of the force-
displacement behaviour of the DDEN-T specimens is a normalized logarithmic one, of
the type:

This kind of function can describe single peak phenomena (i.e. onset of yield and
fracture) quite well. It is a distribution function with a variety of applications in medicine,
economics, environmental and social sciences (14-15). This function requires the
determination of 3 constants: D, xc and w respectively. It can be easily shown (cf. Figure
3) that when Equation 6 is fitted to the experimental F(x) graphs of DDEN-T specimens,
xc can be identified as the Xy quantity mentioned above, and the constant D is none other
than Fmax (see Fig.2). Equations 4,5, and 6 will now yield:

In Figure 3 some applications of Equation 7, for the materials tested are shown. It is easy
to conclude from the presented graphs that the proposed function works quite well
especially in the area about the maximum load. However, some tail effects are visible for
all specimens tested. It can be seen in Figure 3 that the ligament in the cases of the PBT
and HDPE blends does not yield fully. Instead, ligament yielding takes place
simultaneously with crack advance. Note, that this behaviour is common among polymers
and polymer blends studied according to the EWF concept until now (16-20). However,
since the work of fracture as given by Eq. 3 is an integral of the proposed Function 7, it is
also expected that small deviations in the actual F(x) curves will be smoothened by the
integration.

As already mentioned, a very important prerequisite of the EWF approach is based on the
self similarity of the F-X curves. This however, implies that size of these curves is related
to specimen ligament. Thus, it would be reasonable to suppose that the maximum
elongation Xmax of each DDEN-T specimen is a linear function of ligament, l. Moreover,
the ratio of �=Xmax/l should be the same for all specimens, unless a deviation from the
curve similarity criterion would be stated.
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During the application of Eq.6 for the curve fits of Figure 3 it was observed that
parameter w remained almost constant for each specimen series (Table 1).
Based on the three specimens of different ligaments for each blend, the average values
obtained for the Xy, and w constants of Eq. 7, and also the � = Xmax/l ratio along with the
yield strength, are given in Table 1.

It is important to notice that the elongation Xy is not always an almost contant value like
in the case of the materials tested. Indeed, it was pointed out in other studies (21,22) that
Xy is also a linear function of the specimen ligament. In this case, Equation 7 is still
valid, provided that the term Xy is substituted by the term: �·l, where � is none other than
the same analogy ratio as given in Table 1 for Xmax.
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By substituting Xy by �·l in Equation 7 we get:

Having determined the constants xc(=Xy), w, and the Xmax-to-l ratio, �, it is very easy to
apply Equation 7 over a series of different specimen ligaments for each of the polymer
blends concerned in this study. The procedure was comprised of the following steps: for
each specimen ligament l, Fmax and Xmax were calculated using Equation 5 and Table 1
respectively. From the same Table 1, xc(=Xy), could be read, too. In this way all three
needed constants could be determined and the F(x) curve was plotted for the
corresponding ligament.
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The assigned work of fracture could be then calculated by integrating between 0 and
Xmax, force over displacement, as defined in Equation 3:

Wf can be then normalized by the ligament crossection: A=lt and thus the specific work of
fracture, wf, is obtained. It is evident, that by repeating the above steps for a series of
specimen ligaments, one obtains the wf-l pairs needed for the specific essential work of
fracture plots. Consequently, by extrapolating the linear regression line for these graphs
back to zero, both we and ßwp can be determined. In Figure 4 the related experimental and
simulated specific work of fracture vs ligament plots for the materials studied can be
seen. The EWF data both essential and non-essential as determined by the experimental
and simulation data are given in Table 2.

It can be seen from Table 2 and related Figure 4 that the method is more accurate for
ductile systems under plane stress conditions. In this way, both the specific essential and
non-essential works of fracture can be determined with high accuracy. However, there are
cases like the PBT/EAF blends where the experimental results and the ones obtained by
applying Equation 7 differ substantially. Probably more specimens were needed for the
evaluation of the constants of Eq. 7 in this case, or the function is not applicable at all due
to the relatively large experimental scatter observed for this material. This is probably due
to the high thickness (4 mm) and the mixed mode (plane stress/plane strain) of fracture
reported for PBT blends in a previous communication (23).

Of course, the authors understand that the normalized logarithmical simulation proposed
cannot describe the experimental F(x) curves point by point for all the elongation
undergone by a DDEN-T specimen. This is also evident in our Figure 3 where we show
the difference between the simulated and experimental F(x) curves for all materials tested.
Please note here however that the work of fracture Wf depends on the integral of the F(x)
as Equation 3 denotes. However, the ability of the normalized logarithmical function
proposed to provide in means of integration very good results, as far as the Wf is
concerned, is also evident in Figure 4. Actually, the procedure of extracting the toughness
parameters or the integration results was not checked by the referee either, who restrained
only in comparing the shapes of the experimental and simulated F(x) curves.

It is obvious from Figure 4 and Table 2 that the normalized logarithmic function can
approach quite well the essential work of fracture parameters, even if the shape of the
simulated F(x) curve is not 100% the same with the actual experimental as Figure 3
shows. Moreover, our main goal in this work was not to simulate the exact performance
in means of force-displacent of the DDEN-T specimens but the toughness response in
terms of the essential work of fracture method and we have shown (cf. Figure 4 and Table
2) that this was feasible.
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It is also true, that many times during the experimental results, DDEN-T specimens do
not follow Hill's rule �n�1.15�y. Instead, the yield stress measured for them lays around
the 1.15�y limit (4). Hill's criterion however, provides us with a prediction tool for
obtaining the D=F(Xy) parameter over a series of ligaments.

Conclusions

An empirical lognormal function is proposed for the simulation of the deformation
behaviour of the DDEN-T specimens. The simulation accuracy was quite high over a
range of crack sizes. It was found that the function works quite well for plane stress
fracture conditions. This function offers a useful alternative to the traditional EWF
experimental technique, when the curve similarity criterion is valid. This allows the exact
calculation of the lognormal fit parameters. Consequently, the determination of the
essential work of fracture parameters is possible at a given specimen ligament range. The
fit method proposed delivers fair results in the case of mixed mode fracture of the DDEN-
T specimens, where large experimental scatter is observed.
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